Cover Image

Characterization of Green Syntesized Silver Nanoparticles Doped in Polyacrylonitrile Nanofibers

Moeng G. Motitswe, Omolola E. Fayemi

Abstract


This paper reports a cost effective and eco-friendly green technique used for the synthesis of silver metal nanoparticle from orange peel extracts. The synthesized nanoparticle was functionalized with polyacrylonitrile to form PAN/Ag nanofibers by electrospinning. The synthesized nanoparticle and its nanofibers were characterized by using spectroscopic and morphology techniques such as fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, x-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), EDX to determine the elemental composition of the nanofibers and transmission electron microscope (TEM). The optical studies for the silver nanoparticles were carried out at different concentrations, volumes, and incubation time. The nanofiber diameters were evaluated to be 11, 9, 8, 6 nm for PAN , 6 mg Ag + PAN, 8 mg Ag+ PAN, and 10 mg Ag + PAN nanofibers. SEM of silver nanoparticles showed uniformity in morphology of which is spherical shape, with diameter of 20 nm. Thermal stability of the nanofibers was also investigated using thermal gravimetric analysis.


Keywords


Green Synthesis, Silver nanoparticle, Polyacrylonitrile, Electrospinning, Uv-Vis spectroscopy

References


Nasrollahzadeh M, Atarod M, Sajadi SM. Green synthesis of the Cu/Fe3O4 nanoparticles using Morinda morindoides leaf aqueous extract: a highly efficient magnetically separable catalyst for the reduction of organic dyes in aqueous medium at room temperature. Appl Surf Sci. 2016, 364(2016): 636-644

Yang X, Li Q, Wang H, Huang J, Lin L, Wang W, Wang Y, Opiyo JB, Su Y, Qingbiao L, Hong L. Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanopart. Res. 2010, 12(5): 1589-1598

Thirumurugan A, Aswitha P, Kiruthika C, Nagarajan S, Christy AN. Green synthesis of platinum nanoparticles using Azadirachta indica–An eco-friendly approach. Mater Lett. 2016, 170(2016): 175-178

Aromal SA, Philip D. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim Acta A. 2012, 97(2012): 1-5

Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci. 2015, 5(4): 499-504

Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech. 2014, 4(2): 121-126

Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13(10): 2638-2650

Ankamwar B, Chaudhary M, Sastry M. Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Nano-Met Chem. 2005, 35(1): 19-26

Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B. 2010, 81(1): 81-86

Bankar A, Joshi B, Kumar AR, Zinjarde S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf A. 2010, 368(1-3): 58-63

Prasad KP, Dhawale DS, Joseph S, Anand C, Wahab MA, Mano A,Vinu A. Post-synthetic functionalization of mesoporous carbon electrodes with copper oxide nanoparticles for supercapacitor application. Micropor Mesopor Mater. 2013, 172(2013): 77-86

Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016, 7(1): 17-28

Tran QH, Le AT. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol. 2013, 4(3): 1-20

De Moura MR, Mattoso LH, Zucolotto V. Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J Food Eng. 2012, 109(3): 520-524

Kalambate PK, Dar RA, Karna SP, Srivastava AK. High performance supercapacitor based on graphene-silver nanoparticles-polypyrrole nanocomposite coated on glassy carbon electrode. J Power Sources. 2015, 276(2015): 262-270

Andrade PF, de Faria AF, Oliveira SR, Arruda MAZ, do Carmo Gonçalves M. Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles. Water Res. 2015, 81(2015): 333-342

Abaza A, Hegazy EA, Mahmoud GA, Elsheikh B. Characterization and antitumor activity of chitosan/poly (vinyl alcohol) blend doped with gold and silver nanoparticles in treatment of prostatic cancer model. J Pharm Pharmacol. 2018, 6(2018): 659-67

Chang G, Luo Y, Lu W, Qin X, Asiri AM, Al-Youbi AO, Sun X. Ag nanoparticles decorated polyaniline nanofibers: synthesis, characterization, and applications toward catalytic reduction of 4-nitrophenol and electrochemical detection of H2O2 and glucose. Catal Sci Tech. 2012, 2(4): 800-806

Choudhury A. Polyaniline/silver nanocomposites: Dielectric properties and ethanol vapour sensitivity. Sens Actuators B Chem. 2009, 138(1): 318-325

Tu D, Pagliara S, Camposeo A, Persano L, Cingolani R, Pisignano D. Single light-emitting polymer nanofiber field-effect transistors. Nanoscale. 2010, 2(10): 2217-2222

Zhang Y, Kim JJ, Chen D, Tuller HL, Rutledge GC. Electrospun polyaniline fibers as highly sensitive room temperature chemiresistive sensors for ammonia and nitrogen dioxide gases. Adv Funct Mater. 2014, 24(25): 4005-4014

Číková E, Mičušík M, Šišková A, Procházka M, Fedorko P, Omastová M. Conducting electrospun polycaprolactone/polypyrrole fibers. Synth Met. 2018, 235(2018): 80-88

Song Z, Chiang SW, Chu X, Du H, Li J, Gan L, Xu C, Yao Y, He Y, Li B, Kang F. Effects of solvent on structures and properties of electrospun poly (ethylene oxide) nanofibers. J Appl Polym Sci. 2018, 135(5): 45787-45797

Qiao Z, Xie Y, Xu J, Zhu Y, Qian Y. Synthesis of CdS/polyacrylonitrile nanocomposites by γ-irradiation. Mater Res Bull. 2000, 35(8): 1355-1360

Liu H, Ge X, Ni Y, Ye Q, Zhang Z. Synthesis and characterization of polyacrylonitrile–silver nanocomposites by γ-irradiation. Radiat Phys Chem. 2001, 61(1): 89-91

Qiao Z, Xie YI, Zhu Y, Qian Y. Synthesis of PbS/polyacrylonitrile nanocomposites at room temperature by γ-irradiation. J Mater Chem. 1999, 9(4): 1001-1002

D. G. Muratov, E. V.Yakushko, L. V. Kozhitov, A. V. Popkova and M. A. Pushkarev, Modern Electro Mater. 2016, 2: 70-73

Choi YS, Wang KH, Xu M, Chung IJ. Synthesis of exfoliated polyacrylonitrile/Na− MMT nanocomposites via emulsion polymerization. Chem Mater. 2002, 14(7): 2936-2939

Kizildag N, Ucar N, Onen A. Nanocomposite polyacrylonitrile filaments with titanium dioxide and silver nanoparticles for multifunctionality. J Ind Text. 2018, 47(7), 1716-1738

Zhang D, Chung R, Karki AB, Li F, Young DP, Guo Z. Magnetic and magnetoresistance behaviors of solvent extracted particulate iron/polyacrylonitrile nanocomposites. J Phys Chem C. 2009, 114(1): 212-219

Selvam AK, Nallathambi G. Polyacrylonitrile/silver nanoparticle electrospun nanocomposite matrix for bacterial filtration. Fiber Polym. 2015, 16(6): 1327-1335

Mohsenibandpey A, Eslami A, Maleh HK, Rabori MM. Investigating the efficiency of nanocomposite membranes synthesized by polyacrylonitrile polymers containing single-walled carbon nanotubes in decreasing chemical and biological pollution indicators of greywater. Bulg Chem Commun. 2016, 48(2016): 102-111

Luo Q, Yang X, Zhao X, Wang D, Yin R, Li X, An J. Facile preparation of well-dispersed ZnO/cyclized polyacrylonitrile nanocomposites with highly enhanced visible-light photocatalytic activity. Appl Catal B. 2017, 204(2017): 304-315

Li X, Peng T, Zhang Y, Wen Y, Nan Z. A new efficient visible-light photocatalyst made of SnO2 and cyclized polyacrylonitrile. Mater Res Bull. 2018, 97(2018), 517-522

Shojaei M, Sadjadi S, Rajabi-Hamane M, Ahmadi SJ. Synthesis of TiO2/polyacrylonitrile nanofibers composite and its application to lead ions removal from waste waters. Desalination Water Treat. 2015, 56(5): 1403-1412

Yao LR, Song XM, Zhang GY, Xu SQ, Jiang YQ, Cheng DH, Lu YH. Preparation of Ag/HBP/PAN nanofiber web and its antimicrobial and filtration property. J Nanomater. 2016, 2016(2016): 86-96

Kharaghani D, Khan M, Shahzad A, Inoue Y, Yamamoto T, Rozet S, Tamada Y, Kim I. . Preparation and in-vitro assessment of hierarchal organized antibacterial breath mask based on polyacrylonitrile/silver (PAN/AgNPs) nanofiber. Nanomater. 2018, 8(7): 461-472

Thakur M, Sinsabaugh SL, Isaacson MJ, Wong MS, Biswal SL. Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries. Sci Rep. 2(2012): 795

Parekh S, David R, Bannuru K, Krishnaswamy L, Baji A. Electrospun silver coated polyacrylonitrile membranes for water filtration applications. Membranes. 2018, 8(3): 59-69

Lala NL, Ramaseshan R, Bojun L, Sundarrajan S, Barhate RS, Ying‐jun L, Ramakrishna S. Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants. Biotechnol Bioeng. 2007, 97(6): 1357-1365

Pandey N, Shukla SK, Singh NB. Water purification by polymer nanocomposites: An overview. Nanocomposites. 2017, 3(2): 47-66

Zhang S, Tang Y, Vlahovic B. A review on preparation and applications of silver-containing nanofibers. Nanoscale Res Lett. 2016, 11(1): 80-88

Liu Y, Jiang G, Li L, Chen H, Huang Q, Jiang T, Du X. Silver nanoparticles supported on electrospun polyacrylonitrile nanofibrous mats for catalytic applications. MRS Commun. 2016, 6(1): 31-40

Hyllested JÆ, Palanco ME, Hagen N, Mogensen KB, Kneipp K. Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents. Beilstein J Nanotechnol. 2015, 6: 293-299

Halawani EM. Rapid biosynthesis method and characterization of silver nanoparticles using Zizyphus spina christi leaf extract and their antibacterial efficacy in therapeutic application. J Biomater Nanobiotechnol. 2016, 8(1): 22-35

Carrillo-López LM, Zavaleta-Mancera HA, Vilchis-Nestor A, Soto-Hernández RM, Arenas-Alatorre J, Trejo-Téllez LI, Gómez-Merino F. Biosynthesis of silver nanoparticles using Chenopodium ambrosioides. J Nanomater. 2014, 2014(198): 198-206

Ahmed S, Ahmad M, Swami BL, Ikram S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci. 2016, 9(1): 1-7

Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: A mechanism perspective. Nanoscale Res Lett. 2011, 3(2): 635-641

Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016, 17(9): 1534-1567

Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B. 2008, 65(1): 150-153

Gharibshahi L, Saion E, Gharibshahi E, Shaari AH, Matori KA. Structural and optical properties of Ag nanoparticles synthesized by thermal treatment method. Mater. 2017, 10(4): 402-414

Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf B. 2011, 82(1): 152-159

Saquing CD, Manasco JL, Khan SA. Electrospun nanoparticle–nanofiber composites via a one‐step synthesis. Small. 2009, 5(8): 944-951

Ouyang Q, Cheng L, Wang H, Li K. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym Degrad Stab. 2008, 93(8): 1415-1421

Ribeiro RF, Pardini LC, Alves NP, Júnior B, Rios CA. Thermal Stabilization study of polyacrylonitrile fiber obtained by extrusion. Polimeros. 2015, 25(6), 523-530

Dong F, Li Z, Huang H, Yang F, Zheng W, Wang C. Fabrication of semiconductor nanostructures on the outer surfaces of polyacrylonitrile nanofibers by in-situ electrospinning. Mater Lett. 2007, 61(11-12): 2556-2559

Bhattacharjee S. DLS and zeta potential–What they are and what they are not? J Control Release. 2016, 235 (2016): 337-351

Patra S, Mukherjee S, Barui A K, Ganguly A, Sreedhar B, Patra CR. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng C. 2015, 53 (2015): 298-309

Mittal AK, Tripathy D, Choudhary A, Aili PK, Chatterjee A, Singh IP, Banerjee UC. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent. Mater Sci Eng C. 2015, 53 (2015): 120-127

Nayak D, Ashe S, Rauta PR, Kumari M, Nayak B. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater Sci Eng C. 2016, 58 (2016): 44-52


Full Text: PDF

Refbacks

  • There are currently no refbacks.


AJNNR ISSN 2574-6251)Copyright © 2012-2019. All rights reserved. Published by Ivy Union Publishing, 3204 Valley Rush Dr, Apex, North Carolina 27502, United States