Cover Image

Large-scale Analysis of Influenza A Virus Sequences Reveals Universally Conserved Residues of Matrix Proteins

Vivek Darapaneni

Abstract


The matrix proteins of Influenza A Virus are multifunctional proteins. The matrix proteins of Influenza A Virus play imperative roles in the virus life cycle. The objective of the present study was to identify the residue conservation in the matrix proteins of Influenza A Virus. The study was based on 2836 amino acid sequences for the M1 protein and 3331 sequences for the M2 protein. Both the matrix proteins showed similar level of sequence conservation. On the whole, this study exposed residues which are universally conserved among different viral subtypes. These universally conserved residues might be involved in either structure stabilizing or protein-protein interactions. The conserved residues identified in the present study in conjunction with structural analysis of matrix proteins could form basis for designing universal anti-influenza drugs which are resistant to mutations arising in the future.


Keywords


Conservation; Universally; Drugs; Mutation; Resistance; Anti-influenza

Full Text:

PDF

References


Palese P, Shaw ML. Orthomyxoviridae: the viruses and their replication. In: Fields Virology, ed. Knipe DM and Howley PM. Philadelphia: Lippincott Williams & Wilkins; 2007:1647-1689

WHO. Influenza (seasonal). Fact sheet No. 211, 2009

Leibler JH, Otte J, Roland-Holst D, Pfeiffer DU, Magalhaes RS, Rushton J, Graham JP, Silbergeld EK. Industrial Food Animal Production and Global Health Risks: Exploring the Ecosystems and Economics of Avian Influenza. Ecohealth. 2009, 6:58-70

Johnson NP, Mueller J. updating the accounts: global mortality of the 1918–1920 ‘‘Spanish’’ influenza pandemic. Bull Hist Med. 2002, 76:105-115

Simonsen L, Clarke MJ, Williamson GD, Stroup DF, Arden NH, Schonberger LB. The impact of Influenza epidemics on mortality: introducing a severity index. Am J Public Health. 1997, 87:1944-1950

Cox NJ, Subbarao K. Global epidemiology of influenza: past and present. Annu Rev Med. 2000, 51:407-421

Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions WM, Xu X, Skepner E, Deyde V, Okomo-Adhiambo M, Gubareva L, Barnes J, Smith CB, Emery SL, Hillman MJ, Rivailler P, Smagala J, de Graaf M, Burke DF, Fouchier RA, Pappas C, Alpuche-Aranda CM, López-Gatell H, Olivera H, López I, Myers CA, Faix D, Blair PJ, Yu C, Keene KM, Dotson PD Jr, Boxrud D, Sambol AR, Abid SH, St George K, Bannerman T, Moore AL, Stringer DJ, Blevins P, Demmler-Harrison GJ, Ginsberg M, Kriner P, Waterman S, Smole S, Guevara HF, Belongia EA, Clark PA, Beatrice ST, Donis R, Katz J, Finelli L, Bridges CB, Shaw M, Jernigan DB, Uyeki TM, Smith DJ, Klimov AI, Cox NJ. Antigenic and genetic characteristics of swine-origin 2009 A (H1N1) influenza viruses circulating in humans. Science. 2009, 325:197-20

Smith GJD, Dhanasekaran VK, Justin B, Samantha JL, Michael W, Oliver GP, Siu KM, Chung LC, Jayna R, Samir B, Malik JSP, Yi G, Andrew R. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature. 2009, 459:1122-1125

Horimoto T, Kawaoka Y. Influenza: Lessons from past pandemics, warnings from current incidents. Nature Reviews Microbiology. 2005, 3:591-600

Lin YP, Shaw M, Gregory V, Cameron K, Lim W, Klimov A, Subbarao K, Guan Y, Krauss S, Shortridge K, Webster R, Cox N, Hay, A. Avian-to-human transmission of H9N2 subtype influenza A viruses: Relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci. 2000, 97:9654-9658

Gubareva LV, Laurent K, Mikhail NM, Yee SH, Frederick GH. Selection of influenza virus mutants in experimentally infected volunteers treated with oseltamivir. Journal of Infectious Diseases. 2001, 183:523-531

Gubareva LV, Okomo-Adhiambo M, Deyde V, Fry AM, Sheu TG, Garten R, Smith C, Barnes J, Myrick A, Hillman M, Shaw M, Bridges C, Klimov A, Cox N. Update: drug susceptibility of swine-origin influenza A (H1N1) viruses, 2009. Morbidity and Mortality Weekly Report. 2009, 58:433-435

Schrauwen EJA, Fouchier RAM. Host adaptation and transmission of Influenza A viruses in mammals. Emerging Microbes and Infections. 2014, 3:e9

Coloma R, José MV, Rocío A, José LC, Juan O, Jaime MB. The structure of a biologically active influenza virus ribonucleoprotein complex. PLoS Pathogens. 2009, 5:e1000491

Elster C, Eric F, Florence B, Kjeld L, Stephen C, Rob WH, Ruigrok JPZ. A small percentage of influenza virus M1 protein contains zinc but zinc does not influence in vitro M1-RNA interaction. J Gen Virol. 1994, 75:37-42

Wakefield L, Brownlee GG. RNA-binding properties of influenza A virus matrix protein M1. Nucleic Acids Res. 1989, 17:8569-8580

Zhirnov OP. Isolation of matrix protein M1 from influenza viruses by acid-Dependent extraction with nonionic detergent. Virology. 1992, 186:324-330

Cros JF, Palese P. Trafficking of viral genomic RNA into and out of the nucleus: influenza, Thogoto and Borna disease viruses. Virus Res. 2003, 95:3-12

Liu X, Lei S, Maorong Y, Zengfu W, Chongfeng X, Qinghua X, Ke Z, Xin Y, Yoshihiro K, Wenjun L. Cyclophilin A interacts with influenza A virus M1 protein and impairs the early stage of the viral replication. Cellular microbiology. 2009, 11:730-741

Bui M, Whittaker G, Helenius A. Effect of M1 protein and low pH on nuclear transport of influenza virus ribonucleoproteins. J Virol. 1996, 70:8391-8401

Noda T, Hiroshi S, Albert Y, Ayato T, Hiroshi KR, Holland C, Yoshihiro K. Architecture of ribonucleoprotein complexes in influenza A virus particles. Nature. 2006, 439:490-492

Noton SL, Elizabeth M, Dawn F, Anne EM, Debra E, Paul D. Identification of the domains of the influenza A virus M1 matrix protein required for NP binding, oligomerization and incorporation into virions. J Gen Virol. 2007, 88:2280-2290

Avalos RT, Yu Z, Nayak DP. Association of influenza virus NP and M1 proteins with cellular cytoskeletal elements in influenza virus-infected cells. J Virol. 1997, 71:2947-2958

Ali A, Avalos RT, Ponimaskin E, Nayak DP. Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M1 protein. J Virol. 2000, 74:8709-8719

Barman S, Ali A, Hui EK, Adhikary L, Nayak DP. Transport of viral proteins to the apical membranes and interaction of matrix protein with glycoproteins in the assembly of influenza viruses. Virus Res. 2001, 77:61-69

Enami M, Enami K. Influenza virus hemagglutinin and neuraminidase glycol-proteins stimulate the membrane association of the matrix protein. J Virol.1996, 70:6653-6657

Lamb RA, Takeda M. Death by influenza virus protein. Nat Med 2001, 7:1286-1288

Hui EK, Nayak DP. Role of G protein and protein kinase signalling in influenza virus budding in MDCK cells. J Gen Virol. 2002, 83:3055-3066

Holsinger LJ, Lamb RA. Influenza virus M2 integral membrane protein is a homotetramer stabilized by formation of disulfide bonds. Virology. 1991, 183:32-43

Sugrue RJ, Hay AJ. Structural characteristics of the M2 protein of influenza A viruses: evidence that it forms a tetrameric channel. Virology. 1991, 180:617-624

Betakova T. M2 protein-a proton channel of influenza A virus. Curr Pharm Des. 2007, 13:3231-3235

Wang C, Lamb RA, Pinto LH. Activation of the M2 ion channel of influenza virus: A role for the transmembrane domain histidine residue. Biophys J. 1995, 69:1363-1371

Gannagé M, Dorothee D, Randy A, Jörn D, Tania T, Patrick CR, Monica L et al. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell host & microbe. 2009, 6:367-380

Rossman SJ, Lamb AR. Influenza virus assembly and budding. Virology. 2011, 411:229-236

Guan Z, Liu D, Mi M, Zhang J, Ye Q, Wang M, Gao GF, Yan J. Interaction of Hsp40 with Influenza virus M2 protein: implications for PKR signaling pathway. Protein Cell. 2010, 1:944-955

Demirov D, Gabriel G, Schneider C, Hohenberg H, Ludwig S. Interaction of influenza A virus matrix protein with RACK1 is required for virus release. Cell Microbiol. 2012, 14:774-789

Halder UC, Bhowmick R, Mukherjee TR, Nayak MK, Chawla-Sarkar M. Phosphorylation drives an apoptotic protein to activate antiapoptotic genes: paradigm of Influenza A Matrix 1 function. J Biol Chem. 2013, 288:14554-14568

Cao S, Liu X, Yu M, Li J, Jia X, Bi Y, Sun L, Gao GF, Liu W. A nuclear export signal in the matrix protein of influenza A virus is required for efficient virus replication. J Virol. 2012, 86:4883 4891

Akarsu H, Burmeister WP, Petosa C, Petit I, Muller CW, Ruigrok RWH, Baudin F. Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein (NEP/NS2). EMBO J. 2003, 22:4646-4655

Watanabe K, Fuse T, Asano I, Tsukahara F, Maru Y, Nagata K. Identification of Hsc70 as an influenza virus matrix protein (M1) binding factor involved in the virus life cycle. FEBS Lett. 2006; 580:5785-5790

Sha B, Luo, M. Structure of a bifunctional membrane-RNA binding protein, Influenza virus matrix protein M1. Nat Struct Biol. 1997, 4:239-244

Ye Z, Robinson D, Wagner RR. Nucleus-targeting domain of the matrix protein (M1) of influenza virus. J Virol. 1995, 69:1964 -1970

Halder UC, Bagchi P, Chattopadhyay S, Dutta D, Chawla-Sarkar M. Cell death regulation during influenza A virus infection by matrix (M1) protein: a model of viral control over the cellular survival pathway. Cell Death Dis. 2011, 2:e197

Wu C, Jeng K, Lai MMC. The SUMOylation of Matrix Protein M1 Modulates the assembly and Morphogenesis of Influenza A Virus. J Virol. 2011, 85:6618

Pinto LH, Lamb RA. Influenza virus proton channels. Photochem Photobiol Sci. 2006, 5:629-632

Schroeder C, Heider H, Moncke-Buchner E, Lin, TI. The influenza virus ion Channel and maturation cofactor M2 is a cholesterol-binding protein. Eur Biophys J. 2005, 34:52-66

Lazrak A, Iles KE, Liu G, Noah DL, Noah JW, Matalon S. Influenza virus M2 protein Inhibits epithelial sodium channels by increasing reactive oxygen species. FASEB J. 2009, 23:3829-3842

Sugrue RJ, Belshe RB, Hay AJ. Palmitoylation of the influenza A virus M2 protein. Virology. 1990, 179:51-56

Chen BJ, George PL, David J, Robert AL. The influenza virus M2 protein cytoplas-mic tail interacts with the M1 protein and influences virus assembly at the site of virus budding. Journal of Virology. 2008, 82:10059-10070

Holsinger LJ, Shaughnessy MA, Micko A. Analysis of the posttranslational modifications of the influenza virus M2 protein. J Virol. 1995, 69:1219-1225

Beale R, Wise H, Stuart A, Ravenhill BJ, Digard P, Randow F. A LC3-interacting Motif in the Influenza A Virus M2 Protein Is Required to Subvert Autophagy and Maintain Virion Stability. Cell Host & Microbe. 2014, 15, 239-247

Ma H, Kien F, Manière M, Zhang Y, Lagarde N, Tse KS, Poon LLM, Nal B. Human Annexin A6 Interacts with Influenza A Virus Protein M2 and Negatively modulates Infection. J Virol. 2012, 86:1789

Bucher D, Popple S, Baer M, Mikhail A, Gong YF, Whitaker C, Paoletti E, Judd A. M protein (M1) of influenza virus: antigenic analysis and intracellular localization with monoclonal antibodies. Journal of virology. 1989, 63:3622-3633

Ito T, Owen TG, Yoshihiro K, William JB, Webster RG. Evolutionary analysis of the influenza A virus M gene with comparison of the M1 and M2 proteins. Journal of virology. 1991, 65:5491-5498

Le L, Jacek L. Study on phylogenetic relationships, variability, and correlated mutations in M2 proteins of influenza virus A. PloS one. 2011, 6:e22970

Heiny AT, Olivo M, Kellathur NS, Asif MK, Zhang GL, Vladimir B, Tin WT, August JT. Evolutionarily conserved protein sequences of influenza a viruses, avian and human, as vaccine targets. PloS one. 2007, 2:e1190

Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, Tatusova T, Ostell J, Lipman, D. The influenza virus resource at the National Centre for Biotechnology Information. J Virol. 2008, 82:596-601

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high through-put. Nucleic Acids Res. 2004, 32:1792-1797

Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends in Genet. 2000, 16:276-277

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000, 28:235-42

Sharma M, Myunggi Y, Hao D, Huajun Q, Emily P, David DB, Huan-Xiang Z, Timothy AC. Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer. Science. 2010, 330:509-512

Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucl Acids Res. 2005, 33:W299-W302

Glaser F, Pupko T, Paz I, Bell RE, Bechor D, Martz E, Ben-Tal N. ConSurf: Identification of Functional Regions in Proteins by Surface-Mapping of Phylogenetic information. Bioinformatics. 2003, 19:163-164

Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal, N. ConSurf 2010: calculating Evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 2010 38:W529-W533

Celniker G, Nimrod G, Ashkenazy H, Glaser F, Martz E, Mayrose I, Pupko T, Ben-Tal, N. ConSurf: Using Evolutionary Data to Raise Testable Hypotheses about Protein Function. Israel Journal of Chemistry. 2013, 53:199-206

Schueler-Furman O, Baker D. Conserved residue clustering and protein structure prediction. Proteins. 2003, 52:225-235


Refbacks

  • There are currently no refbacks.


AJCMicrob (ISSN 2572-5815) Copyright © 2012-2021. All rights reserved. Published by Ivy Union Publishing, 3204 Valley Rush Dr, Apex, North Carolina 27502, United States