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Abstract  

This review focuses on flow cytometric studies at the single cell level. Currently, flow 

cytometry is used to analyze DNA content, cell cycle distribution, cellular viability, apoptosis, 

calcium flux, intracellular pH and expression of cell surface compounds in targeted cell 

populations. Our criteria for the selection of research papers for this review were focused on 

those that show current cellular applications of flow cytometry.  
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Introduction 

Flow cytometry has been available since the 1970s and has been revolutionizing fields of medicine 

since its discovery. The earliest application of cytometry was to measure the physical and chemical 

characteristics of blood and cancer cells [1, 2]. At the present time, flow cytometry is employed as a 

diagnostic tool used to measure the effects of immunotherapy on tumor biology [3, 4]. It still remains 

a technological challenge to extract three-dimensional morphological information from cells for 

complete characterization and classification [5]. Recently, morphology of complicated cellular 

systems such as cancer can be studied on a single-cell level. Also, flow cytometry advanced the 

chemistry of cell labelling with fluorescent agents by applying up to 18 emission colors with high 

resolution detection to study cancer tumor biology. As a result, cellular composition, DNA content and 

lymph nodes at the single cell level have been analyzed using an integrated system of multicolor flow 

cytometry which provides real-time mapping of vessels [6]. The markers of metastatic cancer are 

circulating tumor cells (CTCs) from the primary tumor [7, 8] and flow cytometry is advancing the 

detection of metastatic circulating tumor cells [9]. Current flow cytometric measurements of cell 

morphology include changes in cell shape, loss of structure on the cell surface, cell detachment, 

condensation of the cytoplasm and cell shrinkage. Flow cytometry can also measure chemical changes 

such as the variation in cellular calcium content, pH and intracellular generation of reactive oxygen 

species [10]. Cells from solid tumor tissue require disaggregation before they can be analyzed by flow 

cytometry [11]. The cell sorting capabilities of flow cytometry have been use in the analysis of 

antibody conjugates and site-specific conjugated cells [12]. Other cellular processes that can be 

monitored by flow cytometry are: cell cycle regulation; cell survival and DNA repair; cellular 

differentiation; signal transduction; antioxidant and xenobiotic detoxification; stem cell biology; 

metabolic regulation; epigenetic mechanisms of gene regulation and tumor/stroma interactions [13-15]. 

DNA content varies with each phase of the cell cycle and this can be assessed using fluorescent DNA 

binding dyes and monoclonal antibodies to detect the expression of antigens [16]. Dead cells can now 

be identified at the early or late stages of necrosis using a range of viability dyes [16]. The 

heterogeneity of a tumor (Figure 1) and the interconnections between cellular components and tissues 

complicate the evaluation of the immune response. Flow cytometry as a single cell detection method 

can visualize and map immunological interventions as well as aid in elucidation of the underlying 

mechanisms of immunity.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Heterogeneous tumor environment with immune system interaction. 
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Early Studies 

The beginnings of flow cytometry started more than 50 years ago. In the 1940s, Papanicolaou and 

Traut demonstrated that they could identify cells from cervical cancer by staining tissues with 

specifically designed stains [17]. In 1953, Coulter patented the first cytometric instrument which was 

used for accurate determination of the number of white or red blood cells, based on electronic 

impedance measurements (US patent number 2,656,508) [18]. Based on these advances, single-cell 

analyzers were constructed in the 1960s. In 1965, Fulwyler developed the first microfluorometer (flow 

cytometer) called the Los Alamos Flow Microfluorometer [19]. The flow microfluorometer was a cell 

separator. This instrument separated cells based on cell volume. In 1968, Göhde developed the first 

fluorescence-based apparatus which worked as a pulse cytophotometer [18]. However, at this time, 

fluorescence techniques were not as popular in research as absorption spectroscopies. Thus, the first 

commercial flow cytometer was built around a Zeiss fluorescent microscope. The commercial name of 

this cytometer was The Cytograph which had an onboard He-Ne laser system at 633 nm for scatter 

measurements. This instrument could segregate and sort live and dead cells depending on their uptake 

of Trypan blue. These advances were followed by a fluorescence apparatus called the Cytofluorograph 

with an air-cooled argon laser operating at 488 nm. In 1976, eight years after the first fluorescence 

based flow cytometer was introduced, it was agreed at the Conference of the American Engineering 

Foundation in Pensacola, Florida, that the name “flow cytometry” would be used [19]. Many 

commercially available cytometers are now equipped with several lasers for multiple wavelength 

generation. Laser diodes emitting at approximately 640 nm were introduced into flow cytometers in 

the early 1990s as replacements for the He-Ne laser [20]. Small He-Ne lasers continued to be used in 

flow cytometers for some time, but laser diodes are now used predominantly. Violet laser diodes were 

the next laser type to see wide usage in flow cytometry. The development of polychromatic flow 

cytometry and multicolor technology has enabled the detection of five or more markers simultaneously. 

Flow cytometry provides a high throughput, multi-dimensional analysis of cells flowing in suspension. 

Today, modern instruments have several lasers and detectors which enables multiple and accurate 

identification of cells from animals, plants, bacteria, yeast or algae and particles such as chromosomes 

or nuclei [21, 22].  

Flow cytometry analyses particles in a fluid as they pass through lasers [23]. Any cell or 

particle that is 0.2 to 150 μm in size can be analyzed using a flow cytometer. The purpose of the 

fluidics system is to transport particles in a stream of fluid to the laser beam where they are 

illuminated. The fluorescence can then be measured to determine the amount and type of cells present 

in a sample [24-29]. Choosing the correct lasers and filter configurations for fluorescent protein 

analysis is similar to designing the detection optics for fluorescent probe or probes. The excitation 

wavelength should be as close to the excitation maxima as possible, although the broad excitation 

curves for fluorescent proteins allow some flexibility in laser choice [30-32].  

Various Analyses 

Flow cytometry is the preferred assay to use for cells sorting, cell counting, drug screening and 

phenotypic analysis [33]. The preclinical and clinical usefulness of flow cytometry as a diagnostic tool 

has increased due to advances in cancer research with the development of new cancer drugs and 

treatments. Traditionally, flow cytometry has been used for the analysis of tumor biology [34].  
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Flow cytometry allows multiparameter analysis of single cells. Figure 2 illustrates several 

major facets of cellular studies that can be performed by using flow cytometry. Besides cell sorting 

and counting, cytometric measurements enable monitoring of cellular interactions, expression of 

surface molecules, cellular proliferation, secretion and cell mobility. Cell proliferation cytometric 

analyses can characterize cell growth and differentiation. Measurement of cell proliferation is used to 

evaluate drug toxicity and inhibition of tumor cell growth. Proliferation measurements using flow 

cytometry is an assay of DNA content [35, 36]. Detection of secreted proteins is difficult as proteins 

released from the cell before detection or may degrade rapidly. Intracellular staining methods can then 

be used for detection of target proteins using flow cytometry. Flow cytometry is used to establish 

secretion profiles of granules and cytokines and cytokines associated with immune cells can influence 

cell mobility [37]. Monitoring of cell-cell interactions using flow cytometry is achieved by labelling 

cells with different dyes. Expression of common cell surface molecules such as glycolipids, 

glycoproteins and clusters of differentiations (often abbreviated as CD) are also measured by flow 

cytometry. CD markers are surface molecules providing targets for immunophenotyping of cells such 

as CD34+, CD31-, CD117 for stem cells, CD45+ for all leukocyte groups, CD45+, CD11b, CD15+, 

CD24+, CD114+, CD182+ for granulocyte, CD4, CD45+, CD14+, CD114+, CD11a, CD11b, 

CD91+,CD16 for Monocyte, CD45+, CD3+ for T lymphocyte, CD45+, CD3+, CD4+ for T helper cell, 

CD4, CD25 for T regulatory cell, CD45+, CD3+, CD8+ for cytotoxic T cell, CD45+, CD19+, CD20+, 

CD24+, CD38, CD22 for B lymphocyte, CD45+, CD61+ for thrombocyte and CD16+, CD56+, CD3-, 

CD31, CD30, CD38 for natural killer cells [38, 39]. Cell adhesion molecules (CAMs) are proteins 

located on the cell surface. Cell adhesion molecules belong to four protein families: the 

immunoglobulin superfamily (IgSF CAMs), the integrins, the cadherins, and the selectins [40]. 

Calcium-independent cell adhesion molecules are IgSF CAMs and lymphocyte homing receptors; 

calcium-dependent CAMs are integrins, cadherins, and selectins [41].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Cell Activity in Heterogeneous Tumor 

 

A review by Brown and coworkers presents applications and principles of flow cytometry in 

clinical hematology [42] for the study of hematologic malignancies and disorders of myeloid and 
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lymphoid such as myeloid leukemia, chronic myeloproliferative neoplasms and chronic 

myelodysplastic neoplasms. Lymphoid disorders studied by flow cytometry include acute 

lymphoblastic leukemia/lymphomas, B-cells, T-cell, and NK-cell lymphomas, large granulocytic 

leukemia with Kir antibodies, plasma cell myelomas and Sezary syndrome. Flow cytometry has been 

shown to be effective for evaluating changes in cell number and proliferation during breast cancer 

chemotherapy [43, 44]. Flow cytometry identifies and segregates (or isolates) particular types of cells 

based on expression of marker molecules on their surface [45-47]. Begg and coworkers applied this 

technique to the study of fibrosarcoma and adenocarcinoma tissues [48]. Also, the biology of cancer 

tumors before and after irradiation has been studied by flow cytometry [49-51]. The intracellular 

distribution of important chemotherapeutic antibiotics belonging to the anthracycline group (e.g. 

adriamycin) was detected by flow cytometry [52, 53]. Flow cytometric investigation showed that 

GNRs conjugated with doxorubicin and cyclo(Arg-Gly-Asp-D-Phe-Cys) peptide demonstrated greater 

cellular uptake and cytotoxicity compared to non-targeted GNRs conjugated with doxorubicin [54]. 

Recently, synthetic glycocluster tumor antigen conjugates which are promising for the development of 

tumor vaccines, have been evaluated by flow cytometry [55, 56]. Other studies include serotonin 

signaling [57], the administration of thymidine analogues [58], and targeted delivery of therapeutics 

such as cytokines and antibodies [59]. All targeting agents can be monitored at several stages of 

activity by using flow cytometry. Recent advances in flow cytometry have made it possible to screen 

biopharmaceuticals and provide their distribution, targeting efficiency and cell vitality conditions.  

Conclusion 

The most recent studies demonstrate that flow cytometry can be used for disease detection and 

treatment monitoring. Flow cytometry is likely the preferred method of diagnosing and 

immunophenotyping various types of cancers. The advances in immunotherapy are likely to benefit 

from the availability of flow cytometry in preclinical and clinical research. Flow cytometry provides 

fast multi-parameter quantification of the biological properties of individual cells at subcellular and 

molecular levels. 
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