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Abstract

Graphene has emerged as a topic of huge scientific interest due to its high surface area, exceptional
mechanical properties, electron transfer, and other physical properties. In polymers, this one-atom
thick 2D crystal may significantly enhance the physical properties at very small loading level. In
this review, essential characteristics of polymer/graphene nanocomposite have been discussed.
Moreover, fabrication techniques (in situ method, solution route, melt technique) frequently
employed for polymer/graphene nanocomposite have been discussed. Applications of these
nanocomposites in Li-ion batteries, electronic devices, and solar cells have been conversed along
with the current challenges associated with processing and scalability of these materials.
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1. Introduction

Polymers have been employed as recurrently active components in wide range of technical applications. The
extensive use of polymers is entrenched in their versatile structure and properties such as lightweight,
processability, strength, ease of fabrication, and low cost. However, technical applications of polymers have
been limited due to deprived thermal, electrical, and mechanical properties [1]. In this regard, physical
properties of polymers have been modified using reinforcement or second phase in the matrix [2].
Nanoparticles (graphite, graphene, carbon nanotube (CNT), carbon nanofilber) have been exploited as
successful reinforcing agent for polymers compared with the traditional fillers. In polymer/nanofiller
nanocomposite, final material properties usually depend on (i) nature and type of polymer; (i) nature and
type of nanofiller; and (iii) nature of interaction between polymer and nanofiller [3]. Consequently, polymer
nanocomposite reveals superior material performance than pristine polymer matrix and composite [4].
Incorporation of graphene nanofiller has gained immense research interest [4]. Graphene is composed of
carbon atoms that are densely packed in honeycomb crystal lattice. Graphene is two-dimensional carbon
nanofiller with one-atom-thick planar sheet of sp? bonded atoms. It is the thinnest known material found in
the universe and has tremendous potential [5]. Graphene exhibits range of essential characteristics such as
flexibility, transparency, high aspect ratio, surface area, tensile strength, thermal and electrical conductivity,
electromagnetic interference shielding ability, and low coefficient of thermal expansion (CTE) [6]. Superior
mechanical properties, high thermal conductivity, and outstanding electronic properties have been observed
when compared with other conventional nanofiller such as carbon nanotube, montmorillonite (nanoclay),
graphite, and exfoliated graphite (EG) [7]. The exclusive properties of graphene are further enhanced when
combined with polymers to form polymer/graphene nanocomposite. Polymer/graphene nanocomposite has
demonstrated superior mechanical, thermal, and electrical properties compared to neat polymers.
Improvements in mechanical and electrical properties of polymer/graphene nanocomposite have been
observed relative to nanoclay or other carbon filler-based composite. Recently, production of
polymer/graphene nanocomposite has gained extraordinary research attention. Graphene has also been
largely exploited as conducting nanofiller in electronic applications [8]. Due to the existence of isolated
graphene sheets, thermal, mechanical, and electrical, and barrier properties of the resulting materials have
been influenced [9]. Polymer/graphene nanocomposite systems are expected as potential contender in
electronic equipment, electrode materials, electronics packing, chips, fuel cells, aerospace, sporting, goods,
radar absorbents, corrosion resistant coatings, and other devices [10].

2. Graphene

Graphene is basic structure of several carbon nanofillers as graphite, CNT, graphene oxide (GO), and
fullerene (Fig. 1).

The planar sheet of sp? bonded carbon atoms in graphene is densely packed In honey comb crystal
structure [11-13]. Graphene own extraordinary properties. It has double surface area than that of a
single walled carbon nanotube (SWCNT). Graphene also has tunable electronic band gap, ultra high
mechanical strength, excellent thermal conductivity, and elasticity [14]. Consequently, graphene is a
monatomic nonomaterial (2D) consisting of sp®-hybridized single layer of carbon atoms with benzene
as repeating structural monomer. Since the discovery of graphene, It has been employed to resolve
several research deficiencies associated with polymer/graphite and polymer/CNT composite [15]. A
single atomic sheet of graphite i.e. graphene is 200 times harder than steel and 30 times harder than
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diamond [16, 17]. Graphene also has certain advantages compared with carbon nanotube (i) graphene
synthesis from inexpensive graphite; (ii) low cost production than nanotube; and (iii) high purity as
metallic impurities present are present in CNT [18]. Table 1 outline various processes used for
graphene production. Graphene, due to excellent mechanical, electrical and thermal properties, has
recently attracted immense research interest as reinforcing phase in nanocomposite materials [19].
Graphene also has intrinsic energy dissipating mechanism, sheet bending and sliding to improve
toughness nanocomposite [20-23]. However, sometimes graphene sheets may restack to form graphite
due to high aspect ratio and vander Waals interaction.

Fig. 1 Graphite, graphene, and graphene oxide.

Table 1 Processes for graphene production.

Method Thickness Advantage
Reduction of GO Multi-layered Good yield

From CNT Multi-layered Thickness control is tricky
Avrc discharge Single to few layer Good yield
Chemical vapor deposition (C\ Single to few layer Controlled thickness
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3. Polymer/graphene nanocomposite

Graphene is a magnificent reinforcement for polymers owing to implausible physical properties such as high
thermal conductivity ~5,000 W/mK, high electron mobility ~ 250,000 cm%Vs, and considerably high
Young’s modulus ~1TPa. Even very small amount of graphene has been found to improve mechanical,
electrical, and thermal properties of nanocomposite [24-26]. Properties of graphene reinforcement have
been compared with carbon nanotube and other conventional nanofillers [27]. A major problem with
graphene reinforcement is poor dispersion in polymer matrices. For this purpose, surface modification of
graphene has been performed. Functionalized graphene has bee found to easily dispersed and compatible
with polymers. Fine distribution of graphene in polymer matrix in turn may enhance the mechanical, thermal,
electrical, and gas barrier properties of final nanocomposite. Compatibility between polymer and graphene
depends on the polar nature of the polymer as well as type of functional groups present on polymer backbone.
In this regard, hydroxyl modified graphene, carboxyl modified graphene, amine modified graphene, as well
as ionic liquid-modified graphene have been produced and studied for fine dispersion in polymer matrices
[28]. Use of unmodified graphene has also been studied with polystyrene by in situ technique [29].
Poly(methyl methacrylate)/graphene nanocomposite has revealed applications in anti-corrosion, additive,
coating, sealer, binders, optical fiber, and outdoor electrical applications [30, 31]. To improve thermal and
electrical properties of the PMMA/graphene nanocomposite, functionalized graphene has been found more
effective than non-functional form [32]. The PMMA/unmodified graphene nanocomposite was obtained
through emulsion polymerization of methyl methacrylate monomer in graphene dispersion. Graphene has
also been reinforced in polyethylene, polypropylene, and polybutylene matrices [33]. Polyvinyl alchol
(PVA)-based graphene nanocomposite were also reported [34]. However, dispersion of graphene in polymer
matrices is still a research challenge. Thermoplastic polyurethane (TPU), polyacrylic acid (PAA),
polyacrylonitrile (PAN), polyester, polyolefin, and epoxy resin have also been considered as potential hosts
for graphene [35-40]. Solution technique has been used in most of cases. In addition, latex technology has
been found wuseful for dispersing graphene into a polymer matrix [41, 42]. Exfoliated
polystyrene(PS)/graphene nanocomposite has been prepared [43]. Exfoliated polypropylene (PP)/graphene
nanocomposite have also been prepared [44]. The storage moduli of PP/graphene nanocomposite was
increased with increasing graphene loading up to 1.0 wt.%. Beyond this concentration, there was slight
reduction in the storage moduli of nanocomposite. An increase in glass transition temperature (T,) was
observed with 0.1 wt. % of graphene. Thermal conductivity of 0.396 W/MK was observed with 2.1vol % of
graphene [45, 46]. Thus, graphene is very promising as nanofiller to fabricate high-performance polymer
nanocomposite [47, 48]. Multilayer graphene nanoplatelet (MLG) and polymer nanocomposite has also
been fabricated from exfoliation of graphite. The affect of MLG on thermal conductivity and stability of
polymer/MLG nanocomposite was explored. The thermal conductivity was found to increase with
increasing nanofiller content.

4. Preparation strategies

Sonication, ultra-sonication, in-situ polymerization, and solution mixing have been used to form
polymer/graphene nanocomposite (Table 2). Solution method is the low cost and facile technique in this
regard (Fig. 2).

Choice of the technique basically depends on uniform dispersion of graphene, exfoliation, and complete
intercalation with polymers [49]. However, all the mentioned techniques appear ideal to process
polymer/graphene nanocomposite [50]. The coupled method of in-situ polymerization and solution mixing
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has been used for the chemical interaction between the polymer and graphene. In solution route, serious
problems are (i) use of hazardous chemicals and (ii) non-feasibility for industrial scale production due to low
yield and high cost. Melt mixing technique is also in demand. However, direct melt-mixing of polymer and
graphene is not adequate for appropriate filler dispersion. The poor dispersion in melt method may affect the
quality and properties of resultant polymer/graphene nanocomposite [51]. Melt route has been modified to
influence the dispersion quality. Therefore, a combined solution and melt route has been designed for better
dispersion of graphene in polymer matrices [52]. Polymer/graphene nanocomposite obtained by
combination approach has shown better mechanical and flexural properties due to better dispersion.
Materials obtained by modified melt approach also show high electrical conductivity.

Table 2 Polymer/graphene nanocomposite.

Polymer

Reinforcement

Processing

Poly(vinyl chloride) (PVC)

Poly(methylmethacrylate) (PMMA)

Polyurethane

Polystyrene (PS)

Polyacrylonitrile (PAN)
Polycarbonate
Rubber/natural rubber

Poly(vinylidine fluride) (PVDF)

Reduced graphene
Reduced graphene
Graphene/Reduced graphene
Graphene/Reduced
graphene/GO
Graphene/graphite/GO
Graphene/Reduced graphene
Graphene/Reduced graphene

Reduced graphene

Solution, In situ route
Solution, In situ route
Melt, Solution, In situ route

Solvent method

Electrospinning, Solvent method
Melt method
Melt method

Solvent, melt method

Ultrasonication
/ Ultrasonicator

Graphene+ Polymer + Solvent

Magnetic Stirrer

Graphene+ Polymer + Solvent

-

p()ii, merigraphene nanocomposite

Fig. 2 Conventional solution technique for graphene dispersion in polymer.
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5. Application of polymer/graphene nanocomposite

Graphene has superior properties compared with polymers which are also reflected in
polymer/graphene nanocomposite. These nanocomposites show superior mechanical, thermal, gas
barrier, electrical and flame retardant properties relative to neat polymers. Polymer/graphene has also
established high electron mobility at room temperature. The probable uses of polymer/graphene
nanocomposite include energy storage devices such as lithium ion batteries, conducting electrodes,
electronic devices, and solar cell and dye-sensitized solar cell.

5.1. Electronic devices
With the advancement in experimental nanosciences, the electronic properties of graphene nanosheets

have gained attention [53, 54]. Field-effect transistor (FET) is an excellent example of
polymer/graphene nanocomposite-based electronics (Fig. 3).

Polymer/gra
ymgphtine A

Fig. 3 Field-effect transistor.

Fabrication of ultra-sensitive sensors has also been effectively established. Various techniques for
micromechanical cleavage have been developed to achieve fine single layer graphene nanosheets [55].
Yield of the methods have also been tried to improve. Among greater yield methods, chemical
reduction of graphene oxide to graphene is successful. However, these graphene sheets have basal
plane of carbon atoms decorated with epoxide and hydroxyl groups [56]. Due to hydrophilic character,
the nanosheet with functional groups may decrease the interplane forces [57]. At present, graphene is
more preferred in electronic devices compared with other thermally conductive fillers such as graphite,
carbon nanotube, carbon black, silicon carbide, silicon nitride, and nanodiamond. Thin films of
polymer/graphene nanocomposite have shown cost efficiency, elasticity, transparency, and electric and
magnetic properties [58]. In electronic applications, mostly thermoset polymers (epoxy, phenolic) are
favored because they do not change their form or do not melt at high temperature. However,
thermoplastic polymers are least recommended for prolonged device stability.

5.2. Li-ion battery

Application in Li-ion battery is a greatest achievement of polymer/graphene nanocomposite. Initial
efforts involve the replacement of liquid electrolyte in battery with solid polymer (Fig. 4). The battery
electrolytes were first established in 1970s [59].
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Fig. 4 Schematic representation of solid polymer lithium batteries.

Polyethylene oxide (PEO) was complexed with alkali metal salts, and the electrolyte showed high ionic
conductivity around 10° Scm™. The polymers electrolytes are classified as pure solid polymer
electrolyte and gel polymer electrolytes. Poly(methyl metacrylate), polyacrylonitrile, and
poly(vinylidene fluoride), and PEO has been successfully used as polymer electrolytes. In solid
polymer electrolytes, lithium salts (LiPFg, LiBF,4, LICF3SO3, LiClO,4) have been dispersed in polymers.
These solid polymer electrolytes show ionic conductivity in the range of 10® to 10* Scm™. Gelled
polymer electrolyte consists of plasticizer or solvent in polymer matrix. These electrolytes have
ambient ionic conductivity of ~102 S cm™. The ionic conductivity of these electrolytes also depends on
the molecular weight of polymers. Consequently, ionic conductivity, mechanical, and physical
properties of solid polymer electrolyte are less than gelled polymer electrolyte [60]. Reduced graphene
oxide (RGO) and thermally reduced graphene oxide (TRGO) have also been used in Li-ion batteries.
Incorporation of silica/titania particles have also been used to improve the efficiency of nano-hybrid
[61]. In PEO and ethylene glycol, GO nanosheets have been directly converted to graphene by simple
sonication method [62]. Graphene has tendency to chemi- and physisorb oxygen from water, oxygen
and CO, species [63, 64].

5.3. Solar cell

In photovoltaic devices, graphene has excellent application due to low-cost, transparency, flexibility,
and wonderful electron-transport properties and very high exporter mobility (Fig. 5).

- +

o
LA
Polymer 1":"

4Smphene

Glass

-

LIGHT

Fig. 5 Polymer/graphene solar cell.
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Recently, several graphene-based solar cells have been reported [65]. In electrodes, graphene is a
perfect 2D material to form films with good transparency, high conductivity, and low roughness.
Graphene oxide reduction to graphene has been employed to form large-area, transparent, and
conductive thin graphene films. Such graphene films have thickness of 10 nm, conductivity ~550 Scm™
and transparency of 70%. In dye-sensitized solar cells, graphene materials have been used as window
electrode [66]. In electrodes, polymer film width was attuned as 20 mm. Later the graphene particles
were dropped on the polymer layer. Vacuum evaporation technique has been used to form solar cell
structures. The polymer/graphene layer is usually coated on glass substrate. In bulk hetero-junction
(BHJ) solar cells, graphene nanocomposite may act as a hole-extraction layer [67-70].

6. Conclusions

In this review, properties of graphene as reinforcement have been discussed. Graphene has been argued
with reference to polymer property improvement including mechanical, thermal, and electrical. The
superimposing effect of graphene and polymer in refining the thermal, conducting, and physical
properties of polymers has been included. Considerable improvement in mechanical, electrical, and
thermal properties was observed in polymer nanocomposite reinforced with graphene. The
conductivity predisposes to high solar cell efficiency of polymer/graphene materials. These
nanocomposite have been prepared using variety of techniques such as in situ polymerization, melt
method, solution route, latex technology and other methods. Generally, dispersion of graphene is poor
in polymer matrices. For this purpose, surface-modified graphene has been employed to form
polymer/graphene nanocomposite. Functional graphene may easily disperse in organic polymer
matrices. The polar interaction between graphene and organic polymers are accountable for better filler
dispersion in the polymers. Potential application of polymer/graphene nanocomposite has been
discussed in electronic devices, batteries, and solar cell.
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